A great deal of evidence has accumulated in recent years for an important but complex role for proteases in tumor development. However, attempts to treat cancer in humans with anti-proteases have been disappointing, and it has been suggested that more basic groundwork is needed before anti-proteases can be effectively applied. Considerable basic information comes from the recognition that earlier results on transformation of chicken embryo fibroblasts (CEF) by the Bryan strain of Rous sarcoma virus (B-RSV) can be explained in terms of proteases and their inhibitors. In particular, the full but reversible normalization of discrete transformed foci by appropriate concentrations of fetal bovine or of calf serum implies a causal role for multiple proteases in transformation, and the efficacy of treatment with a physiological balance of their natural inhibitors. Addition of certain proteases to contact-inhibited normal cultures was then found to stimulate their proliferation. The toxicity of medium produced by CEF heavily transformed with B-RSV suggests that cachexia and other systemic effects of human cancer may result from vascular dissemination of peptides from pericellular proteolysis within tumors. Comprehensive studies revealed significant increases of plasminogen activator and matrix metalloproteinases (MMPs) after infection of CEF with other strains of RSV, and correlation of the proteases with aspects of transformation. A similar role for proteases is indicated in the transformation of mammalian cells by chemical and physical agents. The information gained from functional experiments on cell transformation in culture is complementary to that obtained from the molecular identification of proteases and their inhibitors in all stages of tumor development. The speed, quantification and easy manipulation of the RSV-CEF transformation assay can be combined with current methods of characterizing proteases and anti-proteases to further enrich our basic knowledge of neoplastic development in cells, and facilitate its application to the treatment of cancer.
Read full abstract