Field theories with global continuous symmetries may admit configurations in which time translation invariance is broken by the movement of homogeneous background fields evolving along the flat directions implied by the symmetries. In this context, the field fluctuations along the broken symmetry are well parametrized by a Goldstone boson field that may non-trivially interact with other fields present in the theory. These interactions violate Lorentz invariance as a result of the broken time translation invariance of the background, producing a mixing between the field content and the particle spectrum of the theory. In this article we study the effects of such interactions on the low energy dynamics of the Goldstone boson quanta, paying special attention to the role of the particle spectrum of the theory. By studying the particular case of a canonical two-field model with a mexican-hat potential, we analyze the derivation of the low energy effective field theory for the Goldstone boson, and discuss in detail the distinction between integrating fields v/s integrating quanta, to finally conclude that they are equivalent. In addition, we discuss the implications of our analysis for the study of systems where time translation invariance is broken, such as cosmic inflation and time crystals.
Read full abstract