Weed control is a significant challenge for farmers around the globe. Of the various methods available for combatting weeds, small molecules remain the most effective and versatile technology to date. In the search for novel chemical entities with new modes of action toward herbicide-resistant weeds, we have investigated hexahydrofuro[3,4-b]furan-based acyl-acyl carrier protein (ACP) thioesterase inhibitors inspired by X-ray co-crystal structure-based modeling studies. By exploiting scaffold hopping concepts and molecular modeling studies we were able to identify new hexahydrofuro[3,4-b]furan-based lead structures showing promising activity in vivo against commercially important grass weeds in line with strong target affinity. The present work covers a series of novel herbicidal lead structures that possess a hexahydrofuro[3,4-b]furan scaffold as a structural key feature, carrying ortho-substituted aryloxy side chains. Based on an optimized synthetic approach a broad structure-activity relationship (SAR) study was carried out. The new compounds emerging from our modeling-inspired structural variations show good acyl-ACP thioesterase inhibition in line with promising initial herbicidal activity. Glasshouse trials showed that the hexahydrofuro[3,4-b]furans outlined herein display good control of cold and warm season grass-weed species in pre-emergence application. Remarkably, some of the novel acyl-ACP thioesterase-inhibitors also showed promising efficacy against warm season weeds that are difficult to control. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Read full abstract