This work aims to assess the surface coupling of molecularly imprinted polymers (MIP) on carbon adsorbents produced from spent brewery grain, namely biochar (BC) and activated carbon (AC), as a strategy to improve selectivity and the adsorptive removal of the antibiotic sulfamethoxazole (SMX) from water. BC and AC were produced by microwave-assisted pyrolysis, and MIP was obtained by fast bulk polymerization. Two different methodologies were used for the molecular imprinting of BC and AC, the resulting materials being tested for SMX adsorption. Then, after selecting the most favourable molecular imprinting methodology, different mass ratios of MIP:BC or MIP:AC were used to produce and evaluate eight different materials. Molecular imprinting was shown to significantly improve the performance of BC for the target application, and one of the produced composites (MIP1-BC-s(1:3)) was selected for further kinetic and equilibrium studies and comparison with individual MIP and BC. The kinetic behaviour was properly described by both the pseudo-first and pseudo-second order models. Regarding equilibrium isotherms, they fitted the Freundlich and Langmuir models, with MIP1-BC-s(1:3) reaching a maximum adsorption capacity (qm) of 25 ± 1 μmol g-1, 19 % higher than BC. In comparison with other seven pharmaceuticals, the adsorption of SMX onto MIP1-BC-s(1:3) was remarkably higher, as for the specific recognition of this antibiotic by the coupled MIP. The pH study evidenced that SMX removal was higher under acidic conditions. Regeneration experiments showed that MIP1-BC-s(1:3) provided good adsorption performance, which was stable during five regeneration-reutilization cycles. Overall, this study has demonstrated that coupling with MIP may be a suitable strategy to improve the adsorption properties and performance of biochar for antibiotics removal from water, increasing its suitability for practical applications.
Read full abstract