Ultrafast fiber laser, a vital tool in both science and industry, exhibits two distinct pulse states: the steady soliton (SS) and the breathing soliton (BS). While these states have been extensively studied individually, understanding the complex transition between them is crucial for controlling lasing states effectively. Herein, our experimental observations reveal an intermediate state that toggles between SS and BS, enabled by the dispersive Fourier transform technique. We find that energy hop and decaying breathing processes, driven respectively by the energy quantization effect and Q-switched modulation, govern this transition. Additionally, we observe that the transition between different BS states primarily involves a pure decaying breathing process. Numerical simulations are used to generate similar transition dynamics in a model that combines equations describing the population inversion in a mode-locked laser. This study sheds light on the transition dynamics in non-equilibrium systems, offering insights for intelligently manipulating lasing states.
Read full abstract