BackgroundDuring mechanical ventilation, post-insufflation diaphragm contractions (PIDCs) are non-physiologic and could be injurious. PIDCs could be frequent during reverse-triggering, where diaphragm contractions follow the ventilator rhythm. Whether PIDCs happens with different modes of assisted ventilation is unknown. In mechanically ventilated patients with hypoxemic respiratory failure, we aimed to examine whether PIDCs are associated with ventilator settings, patients’ characteristics or both.MethodsOne-hour recordings of diaphragm electromyography (EAdi), airway pressure and flow were collected once per day for up to five days from intubation until full recovery of diaphragm activity or death. Each breath was classified as mandatory (without-reverse-triggering), reverse-triggering, or patient triggered. Reverse triggering was further subclassified according to EAdi timing relative to ventilator cycle or reverse triggering leading to breath-stacking. EAdi timing (onset, offset), peak and neural inspiratory time (Tineuro) were measured breath-by-breath and compared to the ventilator expiratory time. A multivariable logistic regression model was used to investigate factors independently associated with PIDCs, including EAdi timing, amplitude, Tineuro, ventilator settings and APACHE II.ResultsForty-seven patients (median[25%-75%IQR] age: 63[52–77] years, BMI: 24.9[22.9–33.7] kg/m2, 49% male, APACHE II: 21[19–28]) contributed 2 ± 1 recordings each, totaling 183,962 breaths. PIDCs occurred in 74% of reverse-triggering, 27% of pressure support breaths, 21% of assist-control breaths, 5% of Neurally Adjusted Ventilatory Assist (NAVA) breaths. PIDCs were associated with higher EAdi peak (odds ratio [OR][95%CI] 1.01[1.01;1.01], longer Tineuro (OR 37.59[34.50;40.98]), shorter ventilator inspiratory time (OR 0.27[0.24;0.30]), high peak inspiratory flow (OR 0.22[0.20;0.26]), and small tidal volumes (OR 0.31[0.25;0.37]) (all P ≤ 0.008). NAVA was associated with absence of PIDCs (OR 0.03[0.02;0.03]; P < 0.001). Reverse triggering was characterized by lower EAdi peak than breaths triggered under pressure support and associated with small tidal volume and shorter set inspiratory time than breaths triggered under assist-control (all P < 0.05). Reverse triggering leading to breath stacking was characterized by higher peak EAdi and longer Tineuro and associated with small tidal volumes compared to all other reverse-triggering phenotypes (all P < 0.05).ConclusionsIn critically ill mechanically ventilated patients, PIDCs and reverse triggering phenotypes were associated with potentially modifiable factors, including ventilator settings. Proportional modes like NAVA represent a solution abolishing PIDCs.
Read full abstract