The aim of this study was to determine animal performance, rumen fermentation, and health-related blood metabolites of dairy cows in mid lactation fed with increasing levels (30 and 45%) of forage rape (FR) in the diet. Twelve pregnant multiparous lactating Holstein-Friesian dairy cows were randomly allocated to 1 of 3 dietary treatments in a replicated 3 × 3 Latin square design. The experiment was divided into three 21-d periods. For the control diet, 13.0 kg (dry matter, DM) of grass silage, 3.0 kg DM of commercial concentrate, 2.7 kg of DM cold-pressed extracted canola meal, and 0.45 kg DM of solvent-extracted soybean meal were offered daily. For the other two treatments, 30 and 45% of the DM from silage, canola meal, and commercial concentrate were replaced in equal proportions with FR. Data were analyzed individually using linear and quadratic orthogonal polynomials. Ingestive behavior was altered by the inclusion of FR. We observed a linear increase in eating time at the expense of rumination time. Nevertheless, total DM intake was not affected by dietary treatments, averaging 19.5 ± 0.24 kg of DM/d. Milk yield increased linearly with increasing concentration of FR in the diet. Thus, feed efficiency of cows (kg of milk/kg of DM intake) increased linearly with the percentage of FR in the diet. Inclusion of FR in the diet had no effect on milk composition or milk sensory characteristics. Mean rumen pH of cows decreased linearly from the control to the 45% FR diet; however, dietary treatments had no effect on the daily amount of time that rumen pH was below 5.8 (252 ± 71.4), indicating no risk of subacute ruminal acidosis. Concentrations of total volatile fatty acids in the rumen and molar proportions of acetate and butyrate were increased with FR inclusion, whereas the proportion of propionate was linearly reduced. Excretion of uric acid and total purine derivatives tended to be greater for cows fed FR, which resulted in a trend toward a linear increase in estimated microbial N flow. However, N use efficiency was not affected by FR inclusion. Although differences for some hematological measures (increased white blood cell and neutrophils counts) and a quadratic response for glutamate dehydrogenase for cows fed FR in the diet (decreased with inclusion of 30% and increased with 45% in the diet) were observed, all values were within appropriate ranges for dairy cows. These results indicated that including FR to dairy cow diets, up to 45% of diet DM, improved milk production due to changes in volatile fatty acids and predicted microbial N flow and had no negative effects on dairy cow health or sensory characteristics of milk.