Flotation is a crucial technology for fine coal separation, and accurately acquiring bubble size information during the flotation process is essential for monitoring flotation conditions and achieving intelligent control. However, existing semantic segmentation models encountered issues with boundary disconnection when segmenting flotation bubbles, resulting in deviations between the extracted bubble sizes and their true values. To address the aforementioned challenges, a semantic segmentation model was proposed to maintain high-resolution feature maps throughout the network by designing a parallel branch network structure. Additionally, a ConvTranspose module was proposed to preserve the detailed feature information of images while gradually enhancing the resolution of feature maps. In the model training phase, a hybrid loss function combining pixel classification loss with shape similarity loss was proposed to alleviate the sample imbalance problem caused by the substantial difference in the number of pixels between bubble boundaries and the interior of bubbles. Moreover, since traditional semantic segmentation evaluation metrics, such as MIoU, lack a mechanism for measuring bubble boundary continuity and cannot effectively penalize the problem of boundary disconnection, this paper proposed a new evaluation method for assessing the segmentation performance of flotation froth images. To comprehensively evaluate the effectiveness of the proposed method, this paper conducted tests using flotation froth images collected from actual production processes. Compared with existing methods, the segmentation model proposed in this paper exhibited clear superiority in mitigating the problem of bubble boundary disconnection. The prediction error for the number of bubbles was 6.38 %, which is significantly better than other methods.