The effects of transcranial direct current stimulation (tDCS) are typically attributed to the polarization of cortical neurons by the weak electric fields it generates in the cortex. However, emerging evidence indicates that certain tDCS effects may be mediated through the co-stimulation of peripheral or cranial nerves, particularly the trigeminal nerve (TN), which projects to critical brainstem nuclei that regulate the release of various neurotransmitters throughout the central nervous system. Despite this, the specific pathways involved remain inadequately characterized. In this study, we examined the effects of acute transcutaneous TN direct current stimulation (TN-DCS) on tonic (i.e. mean spike rate and spike rate over time) and phasic (number of bursts, spike rate per burst, burst duration, and inter-burst interval) activities while simultaneously recording single-neuron activity across three brainstem nuclei in rats: the locus coeruleus (LC), dorsal raphe nucleus (DRN), and median raphe nucleus (MnRN). We found that TN-DCS significantly modulated tonic activity in the LC, with notable interactions between stimulation amplitude, polarity, and time epoch affecting mean spike rates. Similar effects were observed in the DRN regarding tonic activity. Further, phasic activity in the LC was influenced by TN-DCS, with changes in burst number, duration, and inter-burst intervals linked to stimulation parameters. Conversely, MnRN tonic activity following TN-DCS remained unchanged. Importantly, xylocaine administration to block TN abolished the effects on tonic activities in both the LC and DRN. These results suggest that tDCS effects may partially arise from indirect modulation of the TN, leading to altered neuronal activity in DRN and LC. Besides, the differential changes in tonic and phasic LC activities underscore their complementary roles in mediating TN-DCS effects on higher cortical regions. This research bears significant translational implications, providing mechanistic insights that could enhance the efficacy of tDCS applications and deepen our understanding of its neurophysiological effects.
Read full abstract