Using the expression of the immediate early gene (IEG) egr-1 as a neuronal activity marker, brain regions potentially involved in learning and long-term memory functions in the grey bamboo shark were assessed with respect to selected visual discrimination abilities. Immunocytochemistry revealed a significant up-regulation of egr-1 expression levels in a small region of the telencephalon of all trained sharks (i.e., 'early' and 'late learners', 'recallers') when compared to three control groups (i.e., 'controls', 'undisturbed swimmers', 'constant movers'). There was also a well-defined difference in egr-1 expression patterns between the three control groups. Additionally, some staining was observed in diencephalic and mesencephalic sections; however, staining here was weak and occurred only irregularly within and between groups. Therefore, it could have either resulted from unintentional cognitive or non-cognitive inducements (i.e., relating to the mental processes of perception, learning, memory, and judgment, as contrasted with emotional and volitional processes) rather than being a training effect. Present findings emphasize a relationship between the training conditions and the corresponding egr-1 expression levels found in the telencephalon of Chiloscyllium griseum.Results suggest important similarities in the neuronal plasticity and activity-dependent IEG expression of the elasmobranch brain with other vertebrate groups. The presence of the egr-1 gene seems to be evolutionarily conserved and may therefore be particularly useful for identifying functional neural responses within this group.
Read full abstract