Biological synchronized rhythmicity is a critical physiological process. The lack of synchronized rhythms, mainly those showing a circadian basis, like sleep, the heart rate (HR) and arterial blood pressure (BP), often leads to several organic challenges, usually associated with adverse outcomes. The aim of the study was to investigate whether the intensive care unit (ICU) environment favors clock genes and cardiorespiratory changes. A total of 22 critically ill patients (16 males; 72.73%) with a mean age of 60.82 ±20.07 years and well-established cardiovascular conditions were selected from ICU. Blood samples were obtained, and total RNA was isolated and reverse-transcribed into complementary DNA (cDNA). A quantitative polymerase chain reaction (qPCR) was performed to assess the target gene expression levels. The urinary concentration levels of melatonin (MEL) were assessed. The heart rate, BP (systolic - SBP, diastolic - DBP and mean - MBP) and the oxygen saturation (SpO2) levels were assessed as continuous variables. The urinary MEL and Brain and muscle Arnt-like protein-1 (BMAL1) levels were shown to have a non-linear relationship with HR (coefficient (coef): 2.318, p = 0.032; coef: 2.722, p = 0.006, respectively) and SBP (coef: 1.000, p = 0.008; coef: 2.000, p = 0.037, respectively), with an explanatory power of up to 50.3% and 39.7% of the HR and SBP variability, respectively. Melatonin, but not BMAL1, was also shown to have a non-linear relationship with MBP (coef: 1.000, p = 0.007), with an explanatory power of up to 31.3% regarding the MBP variability. The HR and SBP oscillatory dynamics was shown to be related to changes in the genetic expression of BMAL1 and the urinary MEL concentrations. To a lower degree, MEL also impacted the variation of MBP. Our results suggest that not only are circadian functional matrices crucial for the dynamics of vital parameters in critically ill patients, but also that routinely assessed cardiovascular parameters like HR and BP may constitute important markers for the circadian timing system function. These parameters are easy to assess and have a relevant prognostic value regarding recovery outcomes, as well as the morbidity and mortality rates in ICU.