Alcohol use disorder (AUD) affects over 15 million adults over age 18 in the United States, with estimated costs of 220 billion dollars annually - mainly due to poor quality of life and lost productivity, which in turn is intricately linked to cognitive dysfunction. AUD-induced neuroinflammation in the brain, notably the hippocampus, is likely to contribute to cognitive impairments. The neuroinflammatory mechanisms mediating the impact of chronic alcohol on the central nervous system, specifically cognition, require further study. We hypothesized that chronic alcohol consumption impairs memory and increases the inflammatory cytokines TNFα, IL6, MCP1, and IL1β in the hippocampus and prefrontal cortex regions in the brain. Using the chronic-binge Gao-NIAAA alcohol mouse model of liver disease, representative of the drinking pattern common to human alcoholics, we investigated behavioral and neuroinflammatory parameters. Our data show that chronic alcohol intake elevated peripheral and brain alcohol levels, induced serum alanine aminotransferase (ALT, a marker of liver injury), impaired memory and sensorimotor coordination, and increased inflammatory gene expression in the hippocampus and prefrontal cortex. Interestingly, serum ALT and hippocampal IL6 correlated with memory impairment, suggesting an intrinsic relationship between neuroinflammation, cognitive decline, and liver disease. Overall, our results point to a likely liver-brain functional partnership and suggest that future strategies to alleviate hepatic and/or neuroinflammatory impacts of chronic AUD may result in improved cognitive outcomes.
Read full abstract