The emergence of higher-dimensional evolution equations in dissimilar scientific arenas has been on the rise recently with a vast concentration in optical fiber communications, shallow water waves, plasma physics, and fluid dynamics. Therefore, the present study deploys certain improved analytical methods to perform a solitonic analysis of the newly introduced three-dimensional nonlinear dynamical equations (all within the current year, 2024), which comprise the new (3 + 1) Kairat-II nonlinear equation, the latest (3 + 1) Kairat-X nonlinear equation, the new (3 + 1) Boussinesq type nonlinear equation, and the new (3 + 1) generalized nonlinear Korteweg–de Vries equation. Certainly, a solitonic analysis, or rather, the admittance of diverse solitonic solutions by these new models of interest, will greatly augment the findings at hand, which mainly deliberate on the satisfaction of the Painleve integrability property and the existence of solitonic structures using the classical Hirota method. Lastly, this study is relevant to contemporary research in many nonlinear scientific fields, like hyper-elasticity, material science, optical fibers, optics, and propagation of waves in nonlinear media, thereby unearthing several concealed features.
Read full abstract