Objective. Commonly used cable equation approaches for simulating the effects of electromagnetic fields on excitable cells make several simplifying assumptions that could limit their predictive power. Bidomain or ‘whole’ finite element methods have been developed to fully couple cells and electric fields for more realistic neuron modeling. Here, we introduce a novel bidomain integral equation designed for determining the full electromagnetic coupling between stimulation devices and the intracellular, membrane, and extracellular regions of neurons. Approach. Our proposed boundary element formulation offers a solution to an integral equation that connects the device, tissue inhomogeneity, and cell membrane-induced E-fields. We solve this integral equation using first-order nodal elements and an unconditionally stable Crank–Nicholson time-stepping scheme. To validate and demonstrate our approach, we simulated cylindrical Hodgkin–Huxley axons and spherical cells in multiple brain stimulation scenarios. Main Results. Comparison studies show that a boundary element approach produces accurate results for both electric and magnetic stimulation. Unlike bidomain finite element methods, the bidomain boundary element method does not require volume meshes containing features at multiple scales. As a result, modeling cells, or tightly packed populations of cells, with microscale features embedded in a macroscale head model, is simplified, and the relative placement of devices and cells can be varied without the need to generate a new mesh. Significance. Device-induced electromagnetic fields are commonly used to modulate brain activity for research and therapeutic applications. Bidomain solvers allow for the full incorporation of realistic cell geometries, device E-fields, and neuron populations. Thus, multi-cell studies of advanced neuronal mechanisms would greatly benefit from the development of fast-bidomain solvers to ensure scalability and the practical execution of neural network simulations with realistic neuron morphologies.