In this study, molecular dynamics (MD) simulations are employed to investigate the interactions between point defects and grain boundaries (GBs) in tungsten. Firstly, the segregation energy of vacancies (Vs) and self-interstitial atoms (SIAs) to GBs is examined. The results indicate that both Vs and SIAs tend to segregate towards GBs. Notably, the different types of GBs exhibit varying attraction to Vs and SIAs. The interaction radius is applied to investigate the degree of segregation, which is a significant index of GBs’ attraction to Vs and SIAs. The segregation radius of SIAs is typically larger than that of Vs. High-angle grain boundaries (HAGBs) show strong segregation for SIAs, facilitating the aggregation at GBs. Additionally, elastic theory is applied to qualitatively discuss the factors influencing the segregation energy distribution. The differences in atomic free volume caused by hydrostatic stress and the lattice distortion induced by point defects lead to Vs and SIAs occupying different sites. Finally, the nudged elastic band (NEB) method is employed to study the migration of Vs and SIAs near GBs, revealing that migration energy barriers for Vs and SIAs in GBs are much lower than in bulk. GBs facilitate the migration of point defects. Low-angle grain boundaries (LAGBs) present a higher energy barrier for V migration. Vs tend to occupy the compressive region, while SIAs tend to occupy the tensile region. Particularly, in comparison to Vs, SIAs are more likely to segregate to GBs due to higher binding energy, wider interaction radius, and extremely lower diffusion energy barrier. This provides some insights into the segregation and migration of point defects in GBs.
Read full abstract