We consider aspects of the noncommutative approach to the standard model based on the spectral action principle. We show that as a consequence of the incorporation of the Clifford structures in the formalism, the spectral action contains an extended scalar sector, with respect to the minimal standard model. This may have interesting phenomenological consequences. Some of these new scalar fields carry both weak isospin and color indices. We calculate the new terms in spectral action due to the presence of these fields. Our analysis demonstrates that the fermionic doubling in the noncommutative geometry is not just a presence of spurious degrees of freedom, but it is an interesting and peculiar property of the formalism, which leads to physically valuable conclusions. Some of the new fields do not contribute to the physical fermionic action, but they appear in the bosonic spectral action. Their contributions to the Dirac operator correspond to couplings with the spurious fermions, which are projected out.
Read full abstract