We consider a gas of bosons interacting through a hard-sphere potential with radius a\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mathfrak {a}$$\\end{document} in the thermodynamic limit. We derive an upper bound for the ground state energy per particle at low density. Our bound captures the leading term 4πρa\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$4\\pi \\rho \\mathfrak {a}$$\\end{document} and shows that corrections are smaller than Cρa(ρa3)1/2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$C \\rho \\mathfrak {a} (\\rho {{\\mathfrak {a}}}^3)^{1/2}$$\\end{document}, for a sufficiently large constant C>0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$C > 0$$\\end{document}. In combination with a known lower bound, our result implies that the first sub-leading term to the ground state energy of a dilute gas of hard spheres is, in fact, of the order ρa(ρa3)1/2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\rho \\mathfrak {a}(\\rho {{\\mathfrak {a}}}^3)^{1/2}$$\\end{document}, in agreement with the Lee–Huang–Yang prediction.