Let A be an associative ring and M a finitely generated projective A-module. We introduce a category RBS(M)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\ ext {RBS}}(M)$$\\end{document} and prove several theorems which show that its geometric realisation functions as a well-behaved unstable algebraic K-theory space. These categories RBS(M)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\ ext {RBS}}(M)$$\\end{document} naturally arise as generalisations of the exit path ∞\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\infty $$\\end{document}-category of the reductive Borel–Serre compactification of a locally symmetric space, and one of our main techniques is to find purely categorical analogues of some familiar structures in these compactifications.
Read full abstract