BackgroundBone formation and resorption regulate bone homeostasis. Excessive osteoclastogenesis enhances bone resorption and causes osteoporosis. Although medicines targeting osteoclast have been developed, these drugs have several side effects. Natural compounds have advantages in safety and efficiency, making them potential candidates for osteoporosis treatment. PurposeThis study aims to elucidate the role of damascenone (Dama) in osteoclastogenesis and osteoporosis. Study design and methodsTo demonstrate the effect of Dama on osteoclast differentiation and function, we performed multiple in vitro experiments including TRAP staining, F-actin staining, bone slice resorption assay, real-time PCR, and western bolt. Further, ROS detection, network pharmacology, microscale thermophoresis assay, and ChIP assay were conducted to elucidate the underlying molecular mechanism. Finally, the in vivo effects of Dama were verified using an ovariectomy induced osteoporosis mice model. ResultsDama inhibited RANKL-induced osteoclast differentiation and bone resorptive function in vitro. The expression of osteoclast-related genes and activation of MAPKs and NF-κB signaling in osteoclast were also attenuated by Dama. Meanwhile, Dama reduced intracellular ROS level via up-regulating Nrf2 expression. Network pharmacology demonstrated that HDAC2 is the potential direct target of Dama. Dama inhibited HDAC2 function and increased H3K27ac level of Nrf2, which induced Nrf2 expression and activated ROS scavenging enzymes. Inhibiting NRF2 or activating HDAC2 attenuated the effect of Dama on osteoclastogenesis. Finally, Dama injection suppressed in vivo osteoclastogenesis and ameliorated bone loss induced by OVX. ConclusionDama attenuates osteoclastogenesis by epigenetically modulating Nrf2 expression and ROS scavenge. This study provides evidence for Dama being a potential treatment for osteoporosis.
Read full abstract