AimsWe evaluated the effects of resistance training (RT) on bone properties, morphology, and bone extracellular matrix (ECM) remodeling markers in an ovariectomy (OVX) rat model. Main methodsThirty-six female rats were divided into four groups: sham sedentary, OVX sedentary, sham RT, and OVX RT. Rats performed RT for ten weeks, during which they climbed a ladder with progressive loads attached to the tail. Tibias were stored for dual-energy X-ray densitometry (DXA), micro-computed tomography (micro-CT), and biomechanical, biophysical, and biochemical analysis. Femurs were stored for morphological, gene expression, and gelatin zymography analysis. Key findingsOVX decreased bone mineral density, stiffness, maximal load, and calcium content, which was reversed by RT. The trabecular number, connectivity, and MMP-13 gene expression decreased in OVX groups. Furthermore, OVX increased run-related transcription factor-2 (RUNX-2) and osteoprotegerin (OPG) gene expression, and increased the number of adipocytes in bone marrow and MMP-2 activity. SignificanceRT was efficient in preventing or reversing changes in bone biomechanical properties in OVX groups, improving fracture load and resilience, which is relevant to prevent fractures. On the other hand, RT did not decrease the number of bone adipocytes in the OVX-RT group. However, RT was efficient for increasing trabecular thickness and cortical bone volume, which improved bone resistance. Our findings provide further insights into the mechanisms involved in the role of RT in OVX damage protection.
Read full abstract