The boron atom is a highly electrophilic reagent due to the presence of its empty p orbital, making it prone to undergo electrophilic addition reactions with the carbon-carbon double bonds of olefins. In this study, the classical C=C reaction pathway occurs when a boron atom attacks the C=C bond of cyclohexene, resulting in the formation of the η2 (1,2)-BC6H10 complex (A) that contains a borirane radical subunit. This complex can further undergo photoisomerization, leading to the formation of a 3,4,5,6-tetrahydroborepine radical (C) through the cleavage of C-C bonds. In addition, two 1-boratricyclo[4.1.0.02,7]heptane radicals with chair (B) and boat (B') conformations were observed through α C-H cleavage reactions. Bonding analysis indicates that these radicals involve a four-center-one-electron (4c-1e) bond. Under UV light irradiation, these two radicals undergo ring-opening and rearrangement reactions, resulting in the formation of a 1-cyclohexen-1-yl-borane radical (D), which is a sp2 C-H activation product. These findings delineate a potential pathway for the synthesis of organoboron radicals through boron-mediated C-H and C-C bond cleavage reactions in cycloolefins.