The New Horizons encounter with the Pluto system revealed Pluto to have an extremely spatially variable surface with expansive dark, bright, and intermediate terrains, refractory and volatile ices, and ongoing/recent endogenous and exogenous processes. Albedo is useful for understanding volatile transport because it quantifies absorbed solar energy; albedo may also provide insights into surface processes. Four filters of the New Horizons LORRI and MVIC imagers are used to approximate the bolometric (flux-weighted, wavelength-integrated) albedo. The bolometric hemispherical albedo (local energy balance albedo) as a function of the incidence angle of the solar illumination is measured for both Cthulhu and Sputnik Planitia, which are extensive, extreme dark and extreme bright terrains on Pluto. For both terrains, the bolometric hemispherical albedo increases by >30% from 0° to 90° incidence. The incidence-angle-average bolometric hemispherical albedo of Cthulhu is 0.12 ± 0.01, and that of Sputnik Planitia is 0.80 ± 0.06, where uncertainties are estimates based on scatter from different photometric functional approximations. The bolometric Bond albedo (global energy balance albedo) of Cthulhu is 0.12 ± 0.01, and that of Sputnik Planitia is 0.80 ± 0.07. A map of Pluto’s incidence-angle-average bolometric hemispherical albedo is produced. The incidence-angle-average bolometric hemispherical albedo, spatially averaged over areas north of ≈30° S, is ≈0.54. Pluto has three general albedo categories: (1) very low albedo southern equatorial terrains, including Cthulhu; (2) high-albedo terrains, which constitute most of Pluto’s surface; and (3) very high albedo terrains, including Sputnik Planitia. Pluto’s extraordinary albedo variability with location is also spatially sharp at some places.
Read full abstract