Lanthanide elements such as europium exhibit distinctive emissions due to the transitions of inner-shell 4f electrons. Inorganic materials containing lanthanide elements have been widely used as phosphors in conventional displays. The hybridization of lanthanide ions with organic components enables to control of the material’s shapes and properties and broadens the possibility of lanthanide compounds as inorganic–organic materials. Lanthanide ion-containing polyoxometalate anions (Ln-POM) are a promising category as an inorganic component to design and synthesize inorganic–organic hybrids. Several inorganic–organic Ln-POM systems have been reported by hybridizing with cationic surfactants as luminescent materials. However, single-crystalline ordering has not been achieved in most cases. Here, we report syntheses and structures of inorganic–organic hybrid crystals of lanthanide-based POM and bolaamphiphile surfactants with two hydrophilic heads in one molecule. An emissive decatungstoeuropate ([EuW10O36]9−, EuW10) anion was employed as a lanthanide source. The bolaamphiphile counterparts are 1,8-octamethylenediammonium ([H3N(CH2)8NH3]2+, C8N2) and 1,10-decamethylenediammonium ([H3N(CH2)10NH3]2+, C10N2). Both hybrid crystals of C8N2-EuW10 and C10N2-EuW10 were successfully obtained as single crystals, and their crystal structures were unambiguously determined using X-ray diffraction measurements. The photoluminescence properties of C8N2-EuW10 and C10N2-EuW10 were investigated by means of steady-state and time-resolved spectroscopy. The characteristic emission derived from the EuW10 anion was retained after the hybridization process.
Read full abstract