Hydrothermal liquefaction (HTL) is one of the most promising thermochemical techniques for converting wet biomass into crude oil-like products (bio-oil). In this study, Catalytic hydrothermal liquefaction of Azolla filiculoides (AZ) was performed over a various loading of nickel (Ni) on magnesium oxide (MgO) catalyst for the higher and quality bio-oil production. The key operating parameters such as temperature, reaction holding time, amount of Ni on MgO supports catalyst, and reaction solvents were investigated in the presence of a hydrogen environment. There was a 12.8 wt% increase in bio-oil yield and a 6.3 wt% decrease in biochar yield with addition of 15 wt% Ni catalysts compared to the non-catalytic reaction bio-oil yield (44.0 wt%). Results confirmed the highest total bio-oil yield of 56.8 wt% was attained at 280 °C with the catalyst amount of 15 wt% at a residence time of 45 min. Gas chromatography-mass spectrometry (GC-MS), FT-IR, CHNS, TGA, and NMR analyses were performed on the bio-oil, identifying 32.8 % long-chain hydrocarbons (C12-C16) along with small amounts of alcohols, alkanes, and esters. The boiling point distribution revealed that bio-oil produced using the Ni/MgO catalyst contained a significantly higher proportion of diesel-range hydrocarbons (42.4 %). Furthermore, the bio-oil yield under ethanol solvent and Ni catalysts showed higher heating value (HHV) 42.2 MJ/kg. Overall in the presence of Ni hydrogenation efficient catalysts on MgO in the liquefaction reaction promoted the deoxygenation and hydrogenation reaction.