Special attention is being paid to the potential applicability of various soft electronics in deformable/wearable devices. These devices must be constantly connected to energy sources to ensure their uninterrupted operation. Electrets, which are capable of retaining quasi-permanent electric charges inside or on the surface of materials, are expected to be a battery-less power source. Here, we present a strategy for harvesting the charges in alkyl-C60 liquids. Suitable substitution of bulky yet flexible branched long-alkyl chains generated C60-mono-adducts and regioisomeric bis-adducts as room-temperature solvent-free liquids. These alkyl-C60 liquids were negatively poled by the corona-discharging and soaked in nylon fabric. The liquid of the C60 bis-adduct exhibited better charge retention in comparison to the liquid of the C60 mono-adduct. This suggests that the bulky long-alkyl chains provided proper insulation for the C60 core and charge trapping in the liquid. This charge-trapping behaviour and the inherent fluidity of the alkyl-C60 liquids enabled their fabrication into deformable mechanoelectric generator (MEG) devices. The MEG exhibited applicability as a deformable micropower source or vibration sensor by generating output voltage pulses even under folded/twisted/rolled conditions. The alkylated-liquid-based MEGs worked at frequencies similar to human body motion, showing promising potential for body motion sensors and healthcare applications.