Abstract 693 Introduction:Breakdown of humoral tolerance to red blood cell (RBC) antigens can result in autoimmune hemolytic anemia (AIHA), a severe and potentially fatal disease. The pathogenesis of AIHA is poorly understood. To investigate the baseline biology of tolerance to self-antigens expressed on RBCs, we utilized a murine transgenic mouse with RBC-specific expression of a model antigen consisting of a triple fusion protein of hen egg lysozyme (HEL), ovalbumin (Ova), and human blood group molecule Duffy; HEL-OVA-Duffy (HOD mouse). Methods:Wild-type C57BL/6 (B6) mice or HOD mice (on a B6 background) were immunized with HEL/CFA or OVA/CFA to test immune responses to antigens contained within HOD. Some animals were immunized with peptides as opposed to whole protein. Anti-HOD antibodies were quantified by indirect immunofluorescence using HOD RBCs as targets. Anti-HEL IgG was quantified by ELISA and anti-HEL secreting B cells were enumerated by ELISPOT. CD4+ T cell responses were assessed by tetramer staining and tetramer pull-down assays using I-Ab-OVA-329-337/326-334. T cell tolerance was specifically broken by adoptive transfer of OT-II CD4+ T cells into HOD mice (OT-II T cells recognize OVA323-339 presented by I-Ab). Effects of HOD antigen expression on B cell development were evaluated by crossing the HOD mouse with an anti-HEL BCR knockin mouse (SwHEL mouse) that is capable of normal class switching. Results:Immunization of B6 mice with OVA/CFA induced high titer antibodies reactive with HOD RBCs; in contrast, no anti-HOD was detected in HOD mice immunized with OVA/CFA. Similarly, no anti-HEL was detected in HOD mice immunized with HEL/CFA, whereas wild-type B6 mice had high anti-HEL titers (p<0.05). These data demonstrate overall humoral tolerance to the HOD antigen. Using pull-down assays, OVA-tetramer reactive T cells were detected in both B6 and HOD mice, with similar endogenous frequencies (mean numbers are 40 and 53 T cells, respectively; at least 6 mice analyzed), suggesting that central tolerance did not eliminate HOD reactive T cells. However, upon immunization with OVA peptide, B6 but not HOD mice had a detectable expansion of OVA-tetramer reactive CD4+ T cells, indicating that peripheral tolerance was preventing HOD autoreactive CD4+ T cells from participating in an immune response. To assess B cell tolerance to the HOD antigen, T cell tolerance was circumvented through adoptive transfer or OTII splenocytes (specific for the OVA323-339 peptide) into HOD mice. Anti-HEL autoantibodies were detected in HOD mice but not control B6 mice (p<0.001). Antibody production correlated with a 10–20 fold increase of anti-HEL antibody secreting cells, as determined by ELISPOT. Autoantibody production in HOD mice was not due to passenger B cells from the OTII donor, an artifact of excess CD4+ T cell number, or bystander activation as no autoantibodies were observed upon adoptive transfer with OTIIs on a Rag knockout background, irrelevant CD4+ T cells from SMARTA mice, or activated CD4+ T cells from TCR75 mice. To test the effects of HOD antigen expression on development of autoreactive B cells, HOD mice were crossed with SwHEL BCR transgenic mice (that express anti-HEL) and the F1 mice were analyzed. HEL-reactive B cells were visualized using multimeric HEL conjugated to allophycocyanin. In HOD-SwHEL+ mice, approximately 46±14% of immature bone marrow B cells were reactive with HEL, compared to 15±12% in HOD+SwHEL+ mice (p=0.043, 3 independent experiments, 5 mice total). Conclusions:These data demonstrate that tolerance to an RBC specific antigen is complete in the CD4+ T cell, but not the B cell compartment. CD4+ T cell tolerance appears to be more an effect of peripheral tolerance than central deletion, as OVA-tetramer reactive CD4+ T cells were visible in HOD mice but did not activate upon immunization with their cognate antigen. In contrast, while the HODxSwHEL F1 mice demonstrate that some B cell tolerance to HOD occurs, the induction of autoantibodies by introducing CD4+ autoreactive T cells (OT-II) demonstrates that B cell tolerance to the HOD antigen is incomplete in HOD mice. Together, these data suggest that a breakdown in T cell tolerance is all that is required for the pathogenesis of AIHA. As the T cell tolerance appears not to be deletional, it is predicted that environmental factors leading to a breakdown in peripheral tolerance of CD4+ T cells would be sufficient to induce AIHA. Disclosures:Zimring:Immucor Inc,: Research Funding.
Read full abstract