It is well-known that blockcipher-based hash functions may be attacked when adopting blockciphers having related-key differential properties. However, all forms of related-key differentials are not always effective to attack them. In this paper we provide the general frameworks for collision and second-preimage attacks on hash functions by using related-key differential properties of instantiated blockciphers, and show their various applications. In the literature, there have been several provably secure blockcipher-based hash functions such as 12 PGV schemes, MDC-2, MJH, Abreast-DM, Tandem-DM, and HIROSE. However, their security cannot be guaranteed when they are instantiated with specific blockciphers. In this paper, we first observe related-key differential properties of some blockciphers such as Even-Mansour (EM), Single-key Even-Mansour (SEM), XPX with a fixed tweak (XPX1111), Chaskey cipher, and LOKI, which are suitable for IoT service platform security. We then present how these properties undermine the security of the aforementioned blockcipher-based hash functions. In our analysis, the collision and second-preimage attacks can be applied to several PGV schemes, MDC-2, MJH instantiated with SEM, XPX1111, Chaskey cipher, to PGV no.5, MJH, HIROSE, Abreast-DM, Tandem-DM instantiated with EM. Furthermore, LOKI-based MDC-2 is vulnerable to the collision attack. We also provide the necessary conditions for related-key differentials of blockciphers in order to attack each of the hash functions. To the best of our knowledge, this study is the first comprehensive analysis of hash functions based on blockciphers having related-key differential properties. Our cryptanalytic results support the well-known claim that blockcipher-based hash functions should avoid adopting blockciphers with related-key differential properties, such as the fixed point property in compression functions. We believe that this study provides a better understanding of the security of blockcipher-based hash functions.