In the process of natural gas hydrate extraction, especially in offshore hydrate extraction, the multiphase flow inside the wellbore is complex and prone to flow difficulties caused by reservoir sand production, leading to pipeline blockage accidents, posing a threat to the safety of hydrate extraction. This paper presents experimental research on the migration characteristics of micrometer-sized sand particles entering the wellbore, detailing the influence of key parameters such as sand particle size, sand ratio, wellbore deviation angle, fluid velocity, and fluid viscosity on the sand bed height. It establishes a predictive model for the deposition height of micrometer-sized sand particles. The model’s predicted results align well with experimental findings, and under the experimental conditions of this study, the model’s average prediction error for the sand bed height is 12.47%, indicating that the proposed model demonstrates a high level of accuracy in predicting the bed height. The research results can serve as a practical basis and engineering guidance for reducing the risk of natural gas hydrate and sand blockages, determining reasonable extraction procedures, and ensuring the safety of wellbore flow.