Recently, we compared an interplay of the adenosine system and nitric oxide (NO) in the regulation of renal function between male normoglycaemic (NG) and streptozotocin-induced diabetic rats (DM). Considering the between-sex functional differences, e.g., in the NO status, we present similar studies performed in female rats. We examined if the theophylline effects (non-selective adenosine antagonist) in NG and DM females with or without active NO synthases differed from the earlier findings. In anaesthetised female Sprague Dawley rats, both NG and DM, untreated or after NO synthesis blockade with L-NAME, theophylline effects, on blood pressure, renal hemodynamics and excretion, and renal tissue NO were investigated. Renal artery blood flow (Transonic probe), cortical, outer-, and inner-medullary flows (laser-Doppler technique), and renal tissue NO signal (selective electrode) were measured. In contrast to males, in female NG and DM rats, theophylline induced renal vasodilation. In NO-deficient females, theophylline induced comparable renal vasodilatation, confirming the vasoconstrictor influence of the renal adenosine. In NG and DM females with intact NO synthesis, adenosine inhibition diminished kidney tissue NO, contrasting with an increase reported in males. Lowered baseline renal excretion in DM females suggested stimulation of renal tubular reabsorption due to the prevalence of antinatriuretic over natriuretic tubular action of adenosine receptors. An opposite inter-receptor balance pattern emerged previously from male studies. The study exposed between-sex functional differences in the interrelation of adenosine and NO in rats with normoglycaemia and streptozotocin diabetes. The findings also suggest that in diabetes mellitus, the abundance of individual receptor types can distinctly differ between females and males.
Read full abstract