We aimed to evaluate performance, body development, metabolism, and expression of genes related to skeletal muscle hypertrophy in non-castrated male dairy kids fed with different levels of MR during the pre-weaning period. Sixty newborn male kids, not castrated, from Saanen and Swiss Alpine breeds, with an average body weight (BW) of 3.834 ± 0.612 kg, were distributed in a randomized block design. Breeds were the block factor in the model (random effect). Kids were allocated into 2 nutrition plans (n = 30 kids per treatment) categorized as follows: low nutritional plan (LNP; 1L MR/kid/day) or high nutritional plan (HNP; 2L MR/kid/day). All kids were harvested at 45 d of life. The majority of nitrogen balance variables were affected by the nutritional plan (P < 0.050). Morphometric measures and body condition score (2.99 - LNP vs. 3.28 - HNP) were affected by nutritional plan (P < 0.050), except hip height, thoracic depth and hip width. The nutritional plan affected the body components (P < 0.050), except esophagus and trachea. Animal performance and carcass traits were influenced by nutritional plan (P < 0.050), except carcass dressing (48.56% on average). Nutritional plan affected (P < 0.050) some blood profile variables as the total cholesterol (141.35 vs. 113.25 mg/dL), triglycerides (60.53 vs. 89.05 mg/dL), LDL (79.76 vs. 33.66 g/mL) and IGF-1 (17.77 vs. 38.55 ng/mL) for LNP and HNP respectively. Hypertrophy was greater in HNP than LNP animals (P < 0.050), being represented by the proportion of sarcoplasm (39.76 vs. 31.99%). LNP had a greater mTOR abundance than HNP (P = 0.045), but AMPK was not affected by the nutritional plan. Our findings show that a higher milk replacer allowance enhances animal performance, body development, metabolic parameters, and cellular hypertrophy in pre-weaned dairy kids.
Read full abstract