In simulations of three-dimensional transient physics filled through a numerical approach, the order of the equation set of high-fidelity models is extremely high. To eliminate the large dimension of equations, a model order reduction (MOR) technique is introduced. In the existing MOR methods, the block Arnoldi algorithm-based MOR method is numerically stable, achieving a passively reduced order model. Nevertheless, this method performs poorly when it is applied to very wide-frequency transients. To eliminate this deficiency, multipoint MOR methods are emerging. However, it is hard to directly apply an existing multipoint MOR method to a 3-D transient field equation set. The implementation issues in a reduction process (such as the selection of expansion points, the number of moments matched at a point and the error bound) have not been explored in detail. In this respect, an adaptive multipoint model reduction model based on the Arnoldi algorithm is proposed to obtain the reduced-order models of a 3-D temperature field. The originality of this study is the proposal of a novel adaptive algorithm for selecting expansion points, matching moments automatically, using a posterior-error estimator based on temperature response coupled with a network topological method (NTM). The computational efficiency and accuracy of the proposed method are evaluated by the numerical results from solving the temperature field of a prototype insulated-gate bipolar transistor (IGBT).