Introduction. High-quality ventilation of underground workings is an important condition for safe and accident-free mining. Research on aerological situation control in work areas is ongoing, but the problem of creating reliable adaptive ventilation systems for shafts and mines remains urgent despite the progress made. In course of excavation, the system of workings on the horizon develops a highly complex structure. Auxiliary ventilation is often the only way to achieve high-quality air exchange in the working area. Methods of research. To continuously provide the working area with an estimated amount of fresh air, as well as to intensify ventilation if the concentration of toxic contaminants is increased, mine auxiliary fans (MAF) are used. The best way to improve MAF environmental and economic efficiency is to automatically control the fan capacity. Results and analysis. The program embedded in the programmable logic controller (PLC) provides for comparing the transmitters readings and the aerological situation allowed by the parameters as well as making a decision on changing the fan capacity. If the change is required, the PLC sends an appropriate command to the controller to adjust the fan engine speed. The MAF scheme is simplified if the blind drift is straight because the transmitter is in the line of sight of the receiver and there is no need for a repeater. The UMP design is of a minimal complexity when the mine working is straight and the control task is limited to ensuring constant air flow supplied to the bottom-hole zone. Out of all the data devices, only the flow transmitter remains in the circuit, while the repeater and PLC are excluded. It should also be noted that during the entire period of tunneling, the fan of an unregulated MAF creates an excess power consumption, therefore consuming more electricity than the fan of an intelligent mechatronic module (IMM). Conclusions. Conversion of MAF to IMM will provide the required amount of fresh air to the bottom-hole zone increasing the safety of miners. Real-time control of IMM capacity will significantly reduce energy consumption and create favorable conditions for optimizing ventilation according to the “price-quality” criterion.