A wind erosion instrument is a core instrument for collecting sand particles in wind and sand flows and studying the laws of wind and sand movement. To study the influence of the internal structure of the wind erosion instrument on its sand collection efficiency, a built-in louver separation device was designed. Based on CFD and Fluent 2022 software, numerical analysis was conducted using an RNG k-ε model, and the discrete phase model (DPM) method was used to calculate the sand collection efficiency. The flow field analysis of the new wind–sand separator was carried out. The influence of blade inclination angle, blade thickness, and blade number on sand collection efficiency was studied using single-factor and response surface analysis methods. The optimal parameter combination was obtained as blade inclination angle of 30°, blade thickness of 1.25 mm, and blade number of 10. A simulation model was established based on the optimal combination parameters, and the performance of the wind erosion instrument before and after the addition of the louver separation device was compared. The simulation results show that adding a louver separation device can increase static pressure, alleviate short-circuit flow and back-mixing phenomena, and stabilize the flow field; increasing tangential velocity leads to an increase in particle centrifugal force; reduce axial velocity, prolong particle stagnation time, and minimize particle escape. The particle trajectory pattern is mostly a continuous spiral path, which is conducive to capturing particles and improving sand collection efficiency. Compared with the original structure, for particles with diameters ranging from 0.001–0.05 mm, 0.005–0.01 mm, 0.01–0.05 mm, 0.05–0.1 mm, and 0.1–0.5 mm, the addition of a louver separation device increased the sand collection efficiency by 32.74%, 22.55%, 33.17%, 11.45%, and 0.13%, respectively. When the wind speed is 13.8 m/s and the diameter range is 0.001–0.5 mm, the average sand collection efficiency obtained from simulation tests and wind tunnel tests is 86.18% and 84.32%, respectively, with an error of 2.2%. The simulation results are reliable. The research results show that adding a louver separation device can improve the sand collection efficiency of the wind erosion instrument, and has better overall performance compared to the original wind–sand separator. This study provides a basis for further research on the structure of wind erosion gauges and the environmental protection of farmland. Strengthening land management can effectively protect soil resources, reduce wind erosion, ensure the stability of the ecosystem, and lay the foundation for promoting the sustainable use of land.
Read full abstract