Electric vehicles have become a crucial component of modern power systems, possessing substantial energy reserves that can be important power supplies in blackouts where the power grid has weak reserves or limited connections to other grids. In order to clarify the technical conditions and control methods of the centralized electric vehicle charging station as the black-start power source of the power grid, assuming that the centralized electric vehicle charging station can be considered a single, large-scale energy storage system, this paper proposes a three-stage coordinated recovery strategy based on the centralized electric vehicle charging station. The strategy involves three distinct stages, beginning with the establishment of AC frequency and voltage by the electric vehicle charging station to initiate the auxiliary load of the power plant. In the middle stage, considering the traditional generator has been connected, the charging station’s control mode is set to provide constant active and reactive power output, providing extra voltage and frequency support to the grid-connected generating units and crucial loads. Finally, in the later stage, control strategies are tailored to the charging power stations’ capacities, with one group of additional oscillation damping controllers, while the other group adopts additional frequency control to decrease power disturbances, ensuring a smooth recovery of the power grid. A PSCAD/EMTDC-based model was constructed to verify the proposed coordinated grid recovery strategies. The results demonstrated that the centralized station successfully established the voltage and frequency of the AC system, and the designed additional controller also made the recovery process much more stable.