Background Traditional Chinese medicine decoction (TCMD) is an oral liquid made by decocting crude medicinal compounds with water. It has complex compositions and diverse odor and taste, most of which have an unacceptable level of bitterness which seriously affects patients' medication compliance. To solve this problem, a variety of taste-masking pathways and different types of taste-masking excipients were combined, using the application of coffee-mate to mask the bitterness of coffee as an existing example. Three composite taste-masking adjuvants were developed to improve the taste of TCMD, referred to as the Chinese Medicine Decoction-Mate (CMD-M). However, whether CMD-M has a good taste-masking effect and whether it affects the chemical compositions and pharmacological effects of the medicine remain unclear. Method The commonly used pediatric medicine Qingre Huazhi Decoction (QRHZD) and the personalized decoctions used in clinical practices were used as the masking research carriers. The taste-masking effect of CMD-M on QRHZD was evaluated by both healthy volunteers and an electronic tongue, and the personalized decoctions were evaluated by clinical subjects. The changes of chemical components of QRHZD before and after taste-masking were evaluated by HPLC. The changes in anti-inflammatory effects were evaluated by establishing mice as an acute inflammatory model. Results The taste-masking effect evaluation results showed that the bitterness of QRHZD was significantly reduced after adding CMD-M. There was no significant difference in the relative peak areas change rate and total peak areas ratio of common peaks of QRHZD before and after taste-masking (P > 0.05), shown by HPLC analysis. The inhibitory rates of QRHZD on ear swelling in mice before and after taste-masking also showed no significant difference (P > 0.05). Conclusions CMD-M can effectively mask the bitterness of decoctions while bringing no significant difference overall in chemical compositions and pharmacological effects before and after QRHZD masking.
Read full abstract