In response to the vulnerability of image encryption techniques to chosen plaintext attacks, this paper proposes a secure image communication scheme based on two-layer dynamic feedback encryption and discrete wavelet transform (DWT) information hiding. The proposed scheme employs a plaintext correlation and intermediate ciphertext feedback mechanism, and combines chaotic systems, bit-level permutation, bilateral diffusion, and dynamic confusion to ensure the security and confidentiality of transmitted images. Firstly, a dynamically chaotic encryption sequence associated with a secure plaintext hash value is generated and utilized for the first round of bit-level permutation, bilateral diffusion, and dynamic confusion, resulting in an intermediate ciphertext image. Similarly, the characteristic values of the intermediate ciphertext image are used to generate dynamically chaotic encryption sequences associated with them. These sequences are then employed for the second round of bit-level permutation, bilateral diffusion, and dynamic confusion to gain the final ciphertext image. The ciphertext image hidden by DWT also provides efficient encryption, higher level of security and robustness to attacks. This technology offers indiscernible secret data insertion, rendering it challenging for assailants to spot or extract concealed information. By combining the proposed dynamic closed-loop feedback secure image encryption scheme based on the 2D-SLMM chaotic system with DWT-based hiding, a comprehensive and robust image encryption approach can be achieved. According to the results of theoretical research and experimental simulation, our encryption scheme has dynamic encryption effect and reliable security performance. The scheme is highly sensitive to key and plaintext, and can effectively resist various common encryption attacks and maintain good robustness. Therefore, our proposed encryption algorithm is an ideal digital image privacy protection technology, which has a wide range of practical application prospects.
Read full abstract