Solving the combined field integral equation (CFIE) for the large-scale scattering problem is computationally expensive. In this letter, we investigate the feasibility of applying deep learning to solve the CFIE for 2-D perfect electrically conducting objects. Inspired by the conjugate gradient method, an iterative deep neural network is designed to learn the manner of solving the surface current density from the CFIE, with the input being the coefficient matrix of the equation. This process involves physics through surface integration and need less iterations than the conventional iterative equation solver. In numerical tests, we evaluate the network's performance by comparing the predicted surface current density and bistatic scattering cross section with the solutions rigorously computed. This method provides an insight into applying machine learning techniques together with electromagnetic (EM) physics to fast EM computation with the same level of accuracy as traditional method.
Read full abstract