GC-IRMS analysis extends and confirms (or not) the interpretation based on the results of GC-MS analyses. For example, it is very useful in determining the sedimentation environment of organic matter. GC-MS analysis of biomarkers and the results are reliable, but only GC-IRMS studies can confirm it. In this study, the origin of BNH (28,30-bisnorhopane from chemoautotrophic bacteria) and origin of higher carotenoids and their derivatives from Chlorobiaceae or Chromotiaceae bacteria were confirmed through isotopic analyzes. Biomarkers were analyzed using the GC-IRMS and EA-IRMS apparatus. The obtained chromatograms from the IRMS analyses were compared with the archival GC-MS analyses for the same samples in order to identify individual chemical compounds. In addition to the existing methodology of sample preparation for analyses, a non-standard method was also used, consisting in the separation of n-alkanes from branched hydrocarbons. The repeatability of the method was determined on the GC-IRMS and the values of δ13C for selected biomarkers from the saturated fraction were determined. It was found that samples with low biomarker content are not suitable for analysis. On the other hand, too high concentration of the analyte causes an increase of the chromatogram baseline and worse separation of the peaks, which is also a problem. For the crude oils the δ13C values were initially determined for the biomarkers of the saturated fraction from the hopanes group: bisnorhopane (BNH), oleanane, C29 norhopane, C30 hopane, moretane and the C31-C35 homohopane series. Relatively small differences in δ13C values were found between BNH/hopanes and BNH/crude oils, which suggests the same source of origin for all biomarkers (including BNH). Determining biomarkers in the aromatic fraction using the GC-IRMS method was not successful. In the future, a special methodology for preparing samples for carbon isotopic analyses of aromatic fraction will be required.
Read full abstract