Light dragging phenomena in accelerated media have classically been modelled neglecting the effect of inertia on the dielectric response of the media. Here, we show that the inertial corrections due to a rotating motion can have a profound impact on light-dragging manifestations, leading notably to birefringence in media that are isotropic at rest. By applying these findings to a rotating unmagnetized plasma, we further reveal how inertia plays, in this case, a dominant role, offering unique opportunities to expose these new effects. Inertia is notably demonstrated to be the source of non-zero drag and enhanced polarization drag, pointing to fundamental differences between linear and angular momentum coupling. In taking advantage of the singular properties of plasmas, this work more generally underlines how rest-frame properties are affected by an accelerated motion, and how these modifications can carry over to wave dynamics.
Read full abstract