ABSTRACT In the farming sector, the automatic detection of plant leaf disease is considered a vital landmark. Farmers move long distances to consult pathologists to observe the disease, which is expensive and time-consuming. Moreover, detection of disease in a premature period is a difficult process in the existing model. Thus, all these challenges motivate us to develop an inventive plant leaf disease detection model. In the developed model, the data is gathered initially and given as input to the pre-processing step using Contrast Limited Adaptive Histogram Equalization (CLAHE). Next, the leaves are segmented from the pre-processed images, and then abnormality segmentation is done by the K-means clustering system. Here, parameters are optimized using the Opposition-based Bird Swarm Algorithm (O-BSA). Further, features were extracted from abnormality-segmented images in feature extraction. The extracted features are given in the classification step, where leaf disease detection is carried out using Optimized Ensemble Machine Learning (OEML), where, parameter optimization is done by O-BSA. Finally, the developed plant leaf detection approach is evaluated with various performance metrics, and given an accuracy of up to 92.26. These findings show that the developed model is promising over conventional methods and its effectiveness in detecting plant leaf disease.
Read full abstract