A new donor-acceptor biradical complex, TpCum,MeZn(SQ-VD) (TpCum,MeZn+ = zinc(II) hydro-tris(3-cumenyl-5-methylpyrazolyl)borate complex cation; SQ = orthosemiquinone; VD = oxoverdazyl), which is a ground-state analogue of a charge-separated excited state, has been synthesized and structurally characterized. The magnetic exchange interaction between the S = 1/2 SQ and the S = 1/2 VD within the SQ-VD biradical ligand is observed to be ferromagnetic, with JSQ-VD = +77 cm-1 (H = -2JSQ-VDŜSQ·ŜVD) determined from an analysis of the variable-temperature magnetic susceptibility data. The pairwise biradical exchange interaction in TpCum,MeZn(SQ-VD) can be compared with that of the related donor-acceptor biradical complex TpCum,MeZn(SQ-NN) (NN = nitronyl nitroxide, S = 1/2), where JSQ-NN ≅ +550 cm-1. This represents a dramatic reduction in the biradical exchange by a factor of ∼7, despite the isolobal nature of the VD and NN acceptor radical SOMOs. Computations assessing the magnitude of the exchange were performed using a broken-symmetry density functional theory (DFT) approach. These computations are in good agreement with those computed at the CASSCF NEVPT2 level, which also reveals an S = 1 triplet ground state as observed in the magnetic susceptibility measurements. A combination of electronic absorption spectroscopy and CASSCF computations has been used to elucidate the electronic origin of the large difference in the magnitude of the biradical exchange coupling between TpCum,MeZn(SQ-VD) and TpCum,MeZn(SQ-NN). A Valence Bond Configuration Interaction (VBCI) model was previously employed to highlight the importance of mixing an SQSOMO → NNLUMO charge transfer configuration into the electronic ground state to facilitate the stabilization of the high-spin triplet (S = 1) ground state in TpCum,MeZn(SQ-NN). Here, CASSCF computations confirm the importance of mixing the pendant radical (e.g., VD, NN) LUMO (VDLUMO and NNLUMO) with the SOMO of the SQ radical (SQSOMO) for stabilizing the triplet, in addition to spin polarization and charge transfer contributions to the exchange. An important electronic structure difference between TpCum,MeZn(SQ-VD) and TpCum,MeZn(SQ-NN), which leads to their different exchange couplings, is the reduced admixture of excited states that promote ferromagnetic exchange into the TpCum,MeZn(SQ-VD) ground state, and the intrinsically weaker mixing between the VDLUMO and the SQSOMO compared to that observed for TpCum,MeZn(SQ-NN), where this orbital mixing is significant. The results of this comparative study contribute to a greater understanding of biradical exchange interactions, which are important to our understanding of excited-state singlet-triplet energy gaps, electron delocalization, and the generation of electron spin polarization in both the ground and excited states of (bpy)Pt(CAT-radical) complexes.