BackgroundIn recent two decades, studies of the annelid nervous systems were revolutionized by modern cell labeling techniques and state-of-the-art microscopy techniques. However, there are still huge gaps in our knowledge on the organization and functioning of their nervous system. Most of the recent studies have focused on the distribution of serotonin and FMRFamide, while the data about many other basic neurotransmitters such as histamine (HA) and gamma-aminobutyric acid (GABA) are scarce.ResultsUsing immunohistochemistry and confocal microscopy we studied the distribution of histamine and gamma-aminobutyric acid in the nervous system of a spionid annelid Pygospio elegans and traced their redevelopment during reparative regeneration. Both neurotransmitters show specific patterns in central and peripheral nervous systems. HA-positive cells are concentrated mostly in the brain, while GABA-positive cell somata contribute equally to brain and segmental ganglia. Some immunoreactive elements were found in peripheral nerves. Both substances were revealed in high numbers in bipolar sensory cells in the palps. The first signs of regenerating HAergic and GABAergic systems were detected only by 3 days after the amputation. Further redevelopment of GABAergic system proceeds faster than that of HAergic one.ConclusionsComparisons with other annelids and mollusks examined in this respect revealed a number of general similarities in distribution patterns of HAergic and GABAergic cells in different species. Overall, the differences in the full redevelopment of various neurotransmitters correlate with neuronal development during embryogenesis. Our results highlight the importance of investigating the distribution of different neurotransmitters in comparative morphological and developmental studies.
Read full abstract