Vibrio vulnificus is a Gram-negative halophilic bacterium commonly found in warm coastal waters. The bacterium can cause severe gastroenteritis from consumption of raw seafood as well as wound infections and necrotizing fasciitis, with mortality rates for sepsis and wound infection at 50% and 17%, respectively [1]. Although infections are rare, V. vulnificus is responsible for the most deaths caused by Vibrios [1] and has the highest per case economic impact of all food-related diseases in the United States [2]. Additionally, the geographical area impacted by V. vulnificus is expanding due to global warming and rising sea temperatures, such that the incidence of infection has risen worldwide [3]. Even more troublesome, recent studies have identified V. vulnificus in previously unaffected regions, suggesting there may be future increase of infections [3]. Risk factors for infection include advanced age, male gender, and underlying disease, particularly liver cirrhosis, immunodeficiency, diabetes, and hemochromatosis [1]. However, illness occurs from less than 1 in 10,000 raw oyster meals served to persons with cirrhotic liver, suggesting factors beyond host susceptibility contribute to productive infection [1]. One factor to be considered is whether human-pathogenic V. vulnificus are relatively rare in food and the environment. As V. vulnificus is a diverse bacterial species [4], the specific factor(s) that might define why some isolates cause disease in humans, while the majority of strains are seemingly non-pathogenic, is poorly understood. The identity of these “human-tropic” factors remains the single largest question regarding V. vulnificus pathogenesis. Discovery and characterization of these factors may then facilitate identifying potentially deadly strains. However, this requires researchers to address critical questions regarding V. vulnificus human pathogenesis in the context of its natural environment. Can Pathogenic Potential be Predicted by Genomes? For years, researchers have attempted to identify genotypic or phenotypic markers to classify this species into “pathogenic” or “non-pathogenic” strains. However, this has proven difficult due to the nature of the bacterium: V. vulnificus is naturally competent and frequently exchanges DNA via horizontal gene transfer (HGT), complicating classification systems [4]. One method has been to classify V. vulnificus into biotypes, with Biotype 1 (BT1) originally composed of human clinical and related environmental strains, Biotype 2 (BT2) containing mostly eel pathogens, and Biotype 3 (BT3) representing a recent outbreak of systemic hybrid strains geographically limited to Israel [5, 6]. BT1 strains were further classified by allelic variation in the gene vcg into Clinical (C) and Environmental (E) types [7]. This split of BT1 into two lineages was apparent also by multilocus sequence typing (MLST) [8], with most clinical isolates clustered. However, this linkage of clinical isolates to a single phylogenetic branch has recently been challenged. First, PCR and MLST-based studies showed that V. vulnificus is in linkage disequilibrium, meaning there is a nonrandom association of alleles at multiple loci [9]. Additionally, BOX-PCR genomic fingerprinting identified 52 unique genotypes, demonstrating that the association between genotype and strain source (environmental or clinical) was not significant. This reveals that genotypic profiles alone are not sufficient predictors of virulence. These authors suggest instead the existence of two different ecotypes, lineages A and B, which represent two major monophyletic groups. A separate whole-genome SNP analysis of hundreds of clinical and environmental V. vulnificus strains suggested two ecotypes, A and B [10]. Unexpectedly, BT2 strains previously categorized separately, overlapped with BT1 in the B ecotype, and BT3 strains emerged as an independent branch within the B ecotype. In both the BOX-PCR [9] and whole-genome SNP analyses [10], most of the previously characterized clinical isolates sort to the A lineage or ecotype, but now many sort to the B groupings. Thus, phylogeny does not seem to hold the predictive value for pathogenicity as the number of strains included in these studies expands. Indeed, the genome-wide SNP analysis suggests that it is HGT of chromosomal segments between strains that leads to the continuous evolution of this pathogen [10] and that pathogenesis approaches could be more informative than phylogenetic approaches to understanding V. vulnificus pathogenicity.
Read full abstract