Strawberry is frequently attacked by mites, which directly affects the yield and quality of this fruit species. The WRKY Group III transcription factors (TFs) play an important role in plant tolerance to biotic sources of stress, such as pathogens and insect pests. In this study, six Group III WRKY TFs (FaWRKY25, FaWRKY31, FaWRKY32, FaWRKY43, FaWRKY44, and FaWRKY45) were identified in strawberry. A phylogenetic analysis showed that the six WRKY III TFs were divided into two clades and all had a conserved WRKYGQK domain and the C-X7-C-X23-H-T-C zinc finger motif. An interaction network analysis revealed that FaWRKY44 was co-expressing with FaWRKY25 and FaWRKY45. The expression patterns showed that the WRKY Group III genes responded to plant hormones and mite infestation in strawberry. To further verify the role of FaWRKY25 in plant resistance to mites, we cloned the FaWRKY25 gene and overexpressed it in transgenic plants. An in vivo subcellular localization analysis indicated that the FaWRKY25 protein was localized in the nucleus. Fewer mites were also detected on the wild-type plants than on FaWRKY25-overexpressing transgenic plants, suggesting that FaWRKY25 negatively regulates the resistance of strawberry to mites. The present study advances our understanding on a potential target that mites use to manipulate host plant defenses.