The deformation amplitudes measured with air-puff OCT are sensitive to both (intraocular pressure) IOP and biomechanical properties of the cornea. Analysis of the amplitudes of corneal deformation is challenging due to interrelation of IOP and corneal biomechanics. In this study, we used natural diurnal IOP fluctuations to investigate corneal deformations in a number of subjects whose eyes were measured multiple times during a day. The results of analysis, based on corneal hysteresis, revealed a corneal hysteresis parameter, which remains constant during a day for each individual eye. We hypothesize that above-mentioned metric might correlate with biomechanical properties of the cornea without influence of IOP. Full Text: PDF ReferencesMeek KM, Tuft SJ, Huang Y, Gill PS, Hayes S, Newton RH, Bron AJ, "Changes in Collagen Orientation and Distribution in Keratoconus Corneas", Invest Ophthalmol Vis Sci, 2005. 46(6): p. 1948-56. CrossRef Zimmermann DR, Fisher RW, Winterhalter KH, Witmer R, Vaughan L, "Comparative studies of collagens in normal and keratoconus corneas", Exp Eye Res, 1988. 46(3): p. 431-42. CrossRef Andreassen TT, Simonsen AH, and Oxlund H, "Biomechanical properties of keratoconus and normal corneas", Experimental Eye Research, 1980. 31(4): p. 435-441. CrossRef Heijl A, Leske MC, Bengtsson B, Hyman L, Bengtsson B, Hussein M, "Reduction of Intraocular Pressure and Glaucoma Progression", Arch Ophthalmol, 2002. 120(10): p. 1268-79. CrossRef Chauhan BC and Drance SM, "The influence of intraocular pressure on visual field damage in patients with normal-tension and high-tension glaucoma", Investigative Ophthalmology & Visual Science, 1990. 31(11): p. 2367-2372. DirectLink Gelaw Y, "The impact of central corneal thickness on intraocular pressure among Ethiopian glaucoma patients: a cross-sectional study", BMC Ophthalmology, 2012. 12(1): p. 58. CrossRef Doughty MJ and Zaman ML, "Human Corneal Thickness and Its Impact on Intraocular Pressure Measures: A Review and Meta-analysis Approach", Surv Ophthalmol, 2000. 44(5): p. 367-408. CrossRef Liu J, and Roberts CJ, "Influence of corneal biomechanical properties on intraocular pressure measurement: Quantitative analysis", J Cataract Refract Surg, 2005. 31(1): p. 146-55. CrossRef Ehlers N, Hansen FK, and Aasved H, "Biometric Correlations of Corneal Thickness", Acta Ophthalmol (Copenh), 1975. 53(4): p. 652-9. CrossRef Harada Y, Hirose N, Tawara A, "The Influence of Central Corneal Thickness and Corneal Curvature Radius on The Intraocular Pressure as Measured By Different Tonometers: Noncontact and Goldmann Applanation Tonometers", J Glaucoma, 2008. 17(8): p. 619-25. CrossRef Alonso-Caneiro D, Karnowski K, Kaluzny BJ, Kowalczyk A, Wojtkowski M, "Assessment of corneal dynamics with high-speed swept source Optical Coherence Tomography combined with an air puff system", Optics Express, 2011. 19(15): p. 14188-14199. CrossRef Dorronsoro C, Pascual D, Perez-Merino P, Kling S and Marcos S, "Dynamic OCT measurement of corneal deformation by an air puff in normal and cross-linked corneas", Biomedical Optics Express, 2012. 3(3): p. 473-487. CrossRef Karnowski K, Kaluzny BJ, Szkulmowski M, Gora M, Wojtkowski M, "Corneal topography with high-speed swept source OCT in clinical examination", Biomedical Optics Express, 2011. 2(9): p. 2709-2720. CrossRef A. N. S. Institute, "American National Standard for Safe use of Lasers," (American National Standards Institute, Orlando, FL, 2000) DirectLink David R, Zangwill L, Briscoe D, Dagan M, Yagev R, Yassur Y, "Diurnal intraocular pressure variations: an analysis of 690 diurnal curves", Br J Ophthamlom, 1992, 76(5): p. 280-282 CrossRef Maczynska E, Karnowski K, Szulzycki K, Malinowska M, Dolezyczek H, Cichanski A, Wojtkowski M, Kaluzny BJ, Grulkowski I, Journal of Biophotonics (to be published).
Read full abstract