AbstractSwitchgrass (Panicum virgatum L.) is one of several grass species being bred for use as a biomass crop to support the biofuel industry. Increases in biomass yield are imperative to ensure that crops such as switchgrass can sustainably meet the needs of this industry. Genomic selection is one strategy that can accelerate breeding gains for complex traits such as biomass yield. The goal of this study was to conduct three cycles of genomic selection in a previously trained Liberty switchgrass population and compare that to one cycle of phenotypic selection, both of which required 3 years to complete. The advanced lines were tested across five locations and three hardiness zones in the Central United States using a randomized complete block design with four replicates. There were strong genotype × location interactions, but the first two generations of genomic selection were superior to Liberty at four of the five evaluation locations. Conversely, phenotypic selection failed to result in significant gains in biomass yield for any of the five evaluation locations. Based on these results from Liberty switchgrass, genomic selection methods are expected to at least double the rates of gain in biomass yield relative to previous estimates using phenotypic selection methods.
Read full abstract