IntroductionAn expanding body of research has explored the crucial role of gut microbiota in cerebral small vessel disease (CSVD). The objective of this study is to investigate alterations in the gut microbiota structure among CSVD patients, to explore the correlation between differential taxonomic levels and the neurovascular coupling index as well as cognitive function and to elucidate the imaging and biomarkers of mild cognitive impairment (MCI) in CSVD. MethodsWe enrolled 104 patients with CSVD and 40 healthy controls (HC). Based on cognitive test scores, CSVD patients were categorized into a cognitively normal group (CSVD-NCI, n=61) and a mild cognitive impairment group (CSVD-MCI, n=43). Performing magnetic resonance imaging (MRI) scans, gut microbiota analysis, as well as clinical and neuropsychological assessments for all participants. Based on arterial spin labeling (ASL) and blood oxygen level-dependent (BOLD) imaging data, cerebral blood flow (CBF) and neural activity indices are computed. The coupling indices of CBF/mReHo, CBF/mfALFF, CBF/mALFF, and CBF/mDC are calculated to assess the whole-brain neurovascular coupling changes in patients with CSVD. ResultsSpecies annotation revealed differences in the composition at the phylum and genus levels among the HC, CSVD-NCI, and CSVD-MCI groups. Additionally, differential analysis using the Kruskal-Wallis test demonstrated specific dominant microbial communities in all three groups. The relative abundance of certain dominant microbial communities in CSVD patients exhibited correlations with neurovascular coupling and cognitive function. The combined assessment of Bacteroides genus and CBF/mDC proved effective in distinguishing between CSVD-NCI and CSVD-MCI, providing a novel non-invasive approach for the diagnosis of MCI in CSVD.
Read full abstract