Underlying variation in height are regulatory changes to chondrocytes, cartilage cells comprising long-bone growth plates. Currently, we lack knowledge on epigenetic regulation and gene expression of chondrocytes sampled across the human skeleton, and therefore we cannot understand basic regulatory mechanisms controlling height biology. We first rectify this issue by generating extensive epigenetic and transcriptomic maps from chondrocytes sampled from different growth plates across developing human skeletons, discovering novel regulatory networks shaping human bone/joint development. Next, using these maps in tandem with height genome-wide association study (GWAS) signals, we disentangle the regulatory impacts that skeletal element-specific versus global-acting variants have on skeletal growth, revealing the prime importance of regulatory pleiotropy in controlling height variation. Finally, as height is highly heritable, and thus often the test case for complex-trait genetics, we leverage these datasets within a testable omnigenic model framework to discover novel chondrocyte developmental modules and peripheral-acting factors shaping height biology and skeletal growth.
Read full abstract