Knee cartilage has limited natural healing capacity, complicating the development of effective treatment plans. Current non-cell-based therapies (e.g., microfracture) result in poor repair cartilage mechanical properties, low durability, and suboptimal tissue integration. Advanced treatments, such as autologous chondrocyte implantation, face challenges including cell leakage and inhomogeneous distribution. Successful cell therapy relies on prolonged retention of therapeutic biologicals at the implantation site, yet the optimal integration of implanted material into the surrounding healthy tissue remains an unmet need. This study evaluated the effectiveness of a newly developed photo-curable adhesive hydrogel for cartilage repair, focusing on adhesion properties, integration performance, and ability to support tissue regeneration. The proposed hydrogel design exhibited significant adhesion strength, outperforming commercial adhesives such as fibrin-based glues. An in vivo goat model was used to evaluate the hydrogels' adhesion properties and long-term integration into full-thickness cartilage defects over six months. Results showed that cell-free hydrogel-treated defects achieved superior integration with surrounding tissue and enhanced cartilage repair, with notable lateral integration. In vitro results further demonstrated high cell viability, robust matrix production, and successful cell encapsulation within the hydrogel matrix. These findings highlight the potential of adhesive hydrogel formulations to improve the efficacy of cell-based therapies, offering a potentially superior treatment for knee cartilage defects.