Developing efficient and comprehensive analysis methods for metabolomics and lipidomics in the biological tissues and body fluids is essential for understanding the disease mechanisms. Although various two-dimensional liquid chromatography-mass spectrometry (2D-LC-MS) methods have been proposed to expand metabolite coverage, achieving higher efficiency in integrated metabolomics and lipidomics studies remains a technical challenge. In this work, a novel 4in1 online analysis system with excellent reproducibility and mass accuracy was constructed for metabolomics and lipidomics study in various biological samples from atherosclerotic mice. This system enabled the simultaneous detection in both positive and negative ion modes with extensive polarity separation in a single analytical run. Using the 4in1 online analysis system, we identified distinct but complementary metabolic signatures associated with atherosclerosis in different biological samples. Specifically, a total of 230 and 170 differential metabolites or lipids were detected in mice plasma samples and aortic tissue samples, respectively, including glycerophospholipids, sphingolipids, fatty acyls, glycerolipids, carboxylic acids, and pyrimidine nucleosides. Additionally, atherosclerosis-related metabolic pathways involved in biosynthesis of unsaturated fatty acids, sphingolipid metabolism, cholesterol metabolism, glycerophospholipid metabolism, and choline metabolism further revealed. These findings demonstrate that the novel 4in1 online analysis system is a faithful, stable and powerful tool for comprehensive metabolomics and lipidomics studies in complex biological matrices.
Read full abstract